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Abstract

Peat fires, the largest fires on earth in terms of fuel consumption, are responsible
for a significant portion of global carbon emissions. Predicting fire in the peatlands
could help decision makers and researchers prevent or monitor peat fires. Despite
this, research on fire prediction for peatlands remains largely understudied as
compared to other forms of fires. However, peatland fires are unique and therefore
require datasets and architectures attuned to their particular characteristics. In
this paper, we propose several models to tackle the problem of fire prediction for
the peatlands. We adapt U-Net and UNet-LSTM neural network architectures
for peat fire prediction. Furthermore, we develop novel neural architectures for
peatland fire prediction, PeatNet and PT-Net, based upon a graph-based and an
transformer-based approach, respectively. In addition, We also present a new
dataset, PeatSet, designed specifically for the problem of peatland fire prediction
using previously existing datasets in the region of Canada. Our results indicate
that these new deep-learning based architectures outperform a regression baseline
from existing peatland research. Among all the tested models, PT-Net achieves the
highest F1 score and an overall accuracy of 99.84%.

1 Introduction

Peatlands are a type of wetland that include marshes, bogs, fens, and swamps. They sequester more
than twice as much carbon as stored in the world’s forests despite covering only 3% of the Earth’s land
area (International Union for Conservation of Nature, 2017; Turetsky et al., 2015). Peatlands comprise
of peat, a carbon-rich organic soil made of plant material that has decomposed and accumulated over
millennia in the wet, anaerobic, acidic, and nutrient-deficient ground conditions. Over time, layered
peat soil grows thicker, sequestering more carbon (Turetsky et al., 2002).

Increasingly, peatland ecosystems are drying, giving way to disastrous peat fires. Under normal
conditions, the naturally wet ecosystem preserves the peat soil and prevents fires. However, the
peatland water table is lowering due both to human activity through drainage and to natural droughts,
weakening the natural protections provided by moisture. Climate change has exacerbated the
magnitude and frequency of fires and the length of the fire season (Flannigan et al., 2009), forming a
positive feedback loop of peatland carbon emissions.

Peat fires release a large amount of the carbon sequestered in peatlands, emitting massive amounts
of carbon dioxide. In 2015, the daily CO2 emissions of Indonesian fires originating mostly from
peatlands exceeded the daily emissions of the entire United States (Harris et al., 2015). Human
drainage and burning of peatlands releases 1.3 gigatons of CO2 per year, almost 6% of global
anthropogenic CO2 emissions annually. (International Union for Conservation of Nature, 2017).
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While peatlands exist in many climates, the largest portion of peatlands is found in the northern
countries of Canada and Russia (Wieder and Vitt, 2006). Canada contains 27% of the world’s
peatlands and is more densely covered by peatlands than Russia (Short, Short). Furthermore, there
are several fire resources made publicly available as a part of Canadian conservation efforts. By
studying boreal peatlands, we can tackle problems that are particularly unique to peatland fires, such
as detecting fires under snow. As such, we focus our data collection efforts on Canada. However,
similar to other areas, there is no single dataset that correlates all these different data sources with
specific emphasis on peatlands.

Several features of peatland fires differentiate them from commonly-explored forest fire approaches.
First, peat fires can smoulder, burn underground, and produce less heat than typical fires, rendering
them difficult to detect. Peat fires can occur in wet or cold areas, even under snow as exemplified by
western Canadian peat fires (Thompson, 2020). Such behavior is contradictory to the simplifying
assumptions adopted for fire detection. For example, the Fire Emissions from NCAR (FINN) dataset
(Wiedinmyer et al., 2011) assumes that emissions in snow cannot be caused by fires, an assumption
which fails to cover Canadian peat fires in particular. Second, peat fires can last for months when
they are smouldering underground, challenging the use of burn duration as a heuristic for fire
severity. Given the environmental impact of peat fires, CO2 emissions should ideally serve as the
best quantification of fire severity. Third, factors such as soil carbon and soil moisture are far more
important for peatlands than accounted for by forest fire models since the soil itself is a fuel source. In
general, understanding this unique biome requires an entirely different interpretation of environmental
factors than for typical forests. Fourth, the spread pattern of peatland fires is characterized by their
ability to go underground and resurface later. This phenomenon challenges the common fire behavior
assumption that fire can only spread to adjacent areas. These properties cause normal fire prediction
techniques to be less effective in the case of peat fires since their unique behavior and impact is not
captured by most existing fire prediction work.

The unique nature of peatland fires therefore presents a valuable opportunity to understand a major
source of carbon emissions. Prior works on wildfire modeling have focused mostly on forest fires
(Jain et al., 2020), with little attention to peatland fires. Most prior works in the domain of peatland
research have been limited in either performance or scalability (Dadap et al., 2019; Bourgeau-Chavez
et al., 2020a,b; Kalacska et al., 2018; Widyatmanti et al., 2019; Honma et al., 2016; Listyorini and
Rahim, 2018; Hugelius et al., 2020). For example, methods using simple statistical methods achieve
limited accuracy, while higher-accuracy mathematical models or physics-based solutions are either
too slow to be used real-time or require super-computing resources (Jain et al., 2020).

On the other hand, machine learning offers a solution to achieve both improved accuracy and
efficiency. Simple linear machine learning solutions have shown promise with significantly fewer
computational resources (Sitanggang et al., 2014; Maulana et al., 2019). Since the general relationship
of predictors to fire occurrence and severity is potentially non-linear, we propose using non-linear,
spatially and temporally aware models to predict burned area for a subsequent time step based upon
the current environment. This functions as a fire spread model that simulates daily spread. We seek to
output two-dimensional map-like predictions from our model. This would allow for detailed spatial
information which could theoretically be used by governmental agencies or other interested parties to
more effectively monitor peatlands.

Our first general contribution are novel neural network architectures that we propose, implement, and
test. With these models we seek to improve upon current peat fire prediction methods and potentially
regular forest fire prediction. First, we adapt U-Net (Ronneberger et al., 2015) for use in peat fire
prediction to capture spatial information about fire spread. Second, we develop an architecture that
integrates U-Net and long short-term memory (LSTM) layers in order to capture both the spatial
and temporal aspects of fire behavior. Third, we create PeatNet, which combines recurrent and
convolutional layers with graph neural layers. The use of graph neural layers in PeatNet helps capture
amorphous spatial shapes and allows for custom connections between spatial areas that can better
represent underground spread. Finally, we create PT-Net by combining the attentional transformers
model (Vaswani et al., 2017) with a ResNet architecture (He et al., 2015) because attentional models
are thought to deal with time-series data better than traditional LSTMs (Vaswani et al., 2017).

Our second contribution is the curation of PeatSet: a Canada-specific peatland dataset built from a
collection of relevant datasets for peatland fire prediction. We use PeatSet to train and test our models.
These datasets were selected after consultation from several experts working on peatlands, as well as
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directly contacting fire dataset creators. We hope our efforts in gathering datasets will benefit future
studies regarding peatlands and highlight the increased need to monitor this precious land resource.

To the best of our knowledge, this is the first paper to have an in-depth discussion about the use of
different deep learning methods to predict peat fires, and also the only paper that has used Graph
Neural Networks or Transformer architectures for the task of wildfire behavior prediction in general.

2 Related Work

2.1 Forest and Urban Fire Prediction

Fire behavior prediction methods generally focus on predicting growth and spread or predicting final
severity. In order to predict severity, many models use metrics such as final burned area or duration
of burn. Using the former assumes severity increases when more land is burned, and using the latter
assume severity increases the longer the fire lasts.

Common fire behavior prediction methods are regression (Castelli et al., 2015; Cortez and Morais,
2007; Mitsopoulos and Mallinis, 2017), random forests (Markuzon and Kolitz, 2009; Mitsopoulos
and Mallinis, 2017), support vector machines (Castelli et al., 2015; Cortez and Morais, 2007), or
Bayesian networks (Markuzon and Kolitz, 2009). We use both regression as a baseline.

Researchers have traditionally formulated the fire prediction problem as a classification problem.
The highest accuracy among these models is 97.5% and is achieved by Shidik and Mustofa (2014).
Similar research achieves far lower accuracy (Coffield et al., 2019; Mitsopoulos and Mallinis, 2017).
However, these lower-accuracy works create classes based upon the ground-truth burned area size
instead of clusters on the covariates as done by Shidik and Mustofa (2014).

While few works have explicitly accounted for temporal information, Liang et al. (2019) compare a
recurrent neural network (RNN) and an LSTM to predict a numerical custom fire severity metric.
Their results indicate that the LSTM outperforms the RNN, motivating our use of an LSTM. In
addition, they discuss that their meteorological covariates are associated with fire severity, suggesting
they are worth considering in the peatlands fire problem as well.

However, a two-dimensional map of predicted fire perimeters is easier for researchers, policymakers,
and fire agencies to analyze and use. Recently, deep learning methods such as reinforcement learning,
CNNs, and graph neural network (GNN) models have gained more attention in mapping fire spread.

Reinforcement learning models produce predicted fire perimeters by viewing the fire as an agent
and modelling actions the agent is likely to take (Zheng et al., 2017; Subramanian and Crowley,
2017; Ganapathi Subramanian and Crowley, 2018). However, this formulation of the problem does
not apply in the context of peatland fires since fires are no longer limited to spreading to the areas
around them. Peat fires can go underground and resurface elsewhere, which is parallel to a delayed
jump action for a fire agent. As such, traditional reinforcement learning algorithms would have to be
altered in order to function for peatlands.

The current state-of-the-art machine learning algorithms for forest fire prediction use convolutional
neural networks (CNN) (Hodges et al., 2019; Radke et al., 2019). Hodges et al. (2019) to predict
future burn perimeters based on six-hourly burn maps generated by the FARSITE physics-based
simulator. Radke et al. (2019) attempts to use a similar CNN architecture named FireCast based
on daily observed fire perimeters from GEOMAC instead of simulation burns. FireCast is able to
outperform FARSITE, which establishes some of the limitations of using simulated burns for training
as compared to observed data. FireCast’s performance emphasizes recall over precision with very
high recall percentages but very low precision.

Few works take into account abnormally shaped spatial information for fire prediction. However, Jin
et al. (2020) uses graph-convolutional layers in a custom architecture, USFP-Net. The USFP-Net uses
a graph convolutional neural network, CNN layers and RNNs to model the fire prediction problem.
USFP-Net outperforms many other common architectures for urban fire prediction. They represent
the area as a graph with edges with weights inversely proportional to the distance between them,
resulting in a fully connected graph. Training such a network would require a long time, and it is
likely computationally infeasible to use this model/replicate such results over larger areas. Further, in
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contrast to PeatNet, the model only accounts for the usual spatial and temporal characteristics of an
area without taking into account fire spread patterns.

2.2 Peatland Studies

We have surveyed literature within the general peatland domain that is potentially relevant to the
problem of peatland fire prediction. Many problems arise in characterizing the peatland biome.
First, it can be difficult to determine which land is peatland. DeLancey et al. (2019) predict where
peatlands exist by using machine learning and boosted decision trees. Mahdianpari et al. (2018)
classify wetlands as being peat-based or not by using a convolutional neural network model. Second,
the peatlands have various characteristics that might be useful as covariates in fire prediction. Prior
work on these elements focus on identifying the type of peatlands (Bourgeau-Chavez et al., 2017),
the amount of sequestered carbon stored in the peat (Minasny et al., 2018), peatlands affected by
permafrost (Hugelius et al., 2020), the acidity of the peatlands (Widyatmanti et al., 2019), identifying
human draining around peatlands (Connolly and Holden, 2017), or the water table depth of the
peatlands (Kalacska et al., 2018) using various remote-sensing datasets, statistical methods, or basic
machine learning models.

2.3 Peatland Fire Prediction

Within the peatlands domain, there has only been a handful of studies in fire prediction, and far fewer
that leverage deep-learning methods.

Honma et al. (2016); Listyorini and Rahim (2018) use a system of detectors near a specific peatland
to predict fire spread. Bourgeau-Chavez et al. (2020a) perform a review of four fires in peatlands
to determine how the type of a peatland affects its likelihood of burning (Bourgeau-Chavez et al.,
2020b). However, these works have limited scalability since they are either restricted to areas in
which they can establish a detection system or are restricted to post-event analysis.

Sitanggang et al. (2014) apply decision trees to determine active fire area, with their best model
reaching an accuracy of 71.66%. However, this model does not perform any forward predictions; it
predicts MODIS hot spots based upon the conditions of that very day. This work therefore shows
that hot spots can be correlated with various climate and landscape information such as soil moisture,
vegetation type, and precipitation.

Maulana et al. (2019) use logistic regression to predict active fire areas up to three months in advance,
achieving an accuracy of 85.16%. The authors average climate and landscape conditions for four
months to predict MODIS fire hot spots aggregated for one month.

Lozhkin et al. (2016) use a differential neural network model to predict carbon monoxide dispersion
from peat fires near highways. This model suggests the ability of neural networks to capture peat
emissions patterns.

3 Methodology

The spatiotemporal nature of the peatland fire problem lends itself well to machine learning. Ideally, a
model should capture both the spatial and temporal characteristics of the peatland fires. In particular,
we have tested several models including U-Net, UNet-LSTM, PT-Net, and PeatNet. In order to
compare our results to previous work, we also implemented and tested a logistic regression model as
a baseline. This section describes the various model architectures used for the prediction task.

3.1 Logistic Regression

We use logistic regression as our baseline classifier. The input to the classifier is a flattened feature
vector for each pixel considered. Batch gradient descent is then used to learn a decision boundary
for classification on a pixel level. Thus, the model is unable to properly account the spatial and the
temporal characteristics of the data.
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Figure 3.1: Sample U-Net architecture: Left side consists of downsampling blocks and the right side
consists of upsampling blocks. The arrows represent the flow of the output. Variables: t -
number of time steps, T - number of temporal features, S - number of static features, b -
batch size, h - height, w - width

3.2 U-Net

U-Net has shown great promise in several image-related tasks such as object detection and segmenta-
tion (Ronneberger et al., 2015). The model consists of several downsampling blocks that create an
encoding of the input variable, followed by a series of upsampling blocks that sequentially build the
output. Each subsequent downsampling block uses a set of convolutional and max-pooling layers to
increase the number of features and reduce the size of each channel. Each upsampling layer uses a
set of convolutional layers and convolutional transpose layers to decrease the number of channels and
increase the size of each channel. The downsampling layers learn increasingly coarse information
about the input, which is then fed to the upsampling layers. In our implementation, different features
represent different channels in the input. For features with a temporal component, such as CO2
emissions or VIIRS, the different time-steps are regarded as different channels.

3.3 UNet-LSTM

Input
(b*t, T+S, h, w)        UNet     LSTM    Output

(b, C, h, w)

   Permute 
+ 

    Reshape

(b*h*w, T, C) → 
(b, c, w)

   Permute 
+ 

    Reshape

(b*t, C’, h, w) → 
(b*h*w, C’)

Last 
time 
value

Figure 3.2: UNet-LSTM Architecture: Each batch is first fed into the U=Net component and then
reshaped before being passed into the LSTM layer. b: batch size, h: height, C ′: number
of output channels from the U-Net component, C : number of output channels–one for
each class

We implement a UNet-LSTM that is able to learn both the spatial information and temporal infor-
mation. The inputs are first passed through the U-Net component and then to the LSTM layer. The
U-Net component considers the temporal information as a part of the batch dimension, thus only
learning the spatial features. The output of this component is then reshaped such that the spatial
features are a part of the batch dimension and the temporal features no longer are; this is then fed into
the LSTM layer, which learns only temporal relations.
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Figure 3.3: PeatNet Architecture: Brown points represent peatlands, and yellow points represent
non-peatlands. Each node also has a self-loop in addition to the edges shown. Refer to
the previous page for the U-Net architecture used.

3.4 PeatNet

As discussed above, peatland fires spread underground. Ideally, a model should consider that the
source of the underground fire may be far away. Typical CNNs only take into account fire points that
are adjacent to the current area. To account for this underground phenomenon, we construct a novel
graph neural network architecture to connect ‘peat points’ to other non-adjacent ‘peat points’. At the
same time, fires are unlikely to move very far away.

Our graphical representation encodes peat points as nodes, where each peat node is connected to
other peat nodes at a physical distance less than k, a hyperparameter. Further, we also add self-edges
to both peat and non-peat nodes. A graph convolution is then applied to this graph, which helps the
peat nodes gain additional information about other peat nodes. In particular, the graph convolution
function essentially represents each node as an aggregation of its neighbors. Consequently, the
encoding created for peat points is dependent on the other peat points in addition to itself, while the
encoding for non-peat points is dependent on just the point itself. We then pass the final result of the
graphical convolution and the original input features to the UNet-LSTM component. The output of
the UNet-LSTM is finally passed through a fully connected layer to yield the final output.

3.5 PT-Net

 Residual    
Downsample

 Residual    
Downsample

 Residual    
Downsample

   Transformer

Residual 
Upsampling

Residual 
Upsampling

Residual 
Upsampling

    Input
     (b, t*T + S, h, w)

 Output
       (b, C, h, w)

Linear 
Layer

Figure 3.4: PT-Net Architecture: The input batch is encoded by the down-sampling layers, accumu-
lated by the attention modules, and then upsampled into the output. Figure notations are
the same as in Figure 3.2.

As discussed above, a good model needs to be able to correctly extract the temporal and spatial
information about the data. Recent state of the art studies show that attention-based neural networks
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(Vaswani et al., 2017) have shown to be able to capture sequence based data better than other neural
networks such as LSTMs. Accordingly, we extend upon the LSTM in modeling temporal information.
Specifically, we implement a residual encoder-decoder based upon the work of He et al. (2015) with
three downsampling blocks in the encoder and three upsampling blocks in the decoder. We account
for temporal relations with a transformer (Vaswani et al., 2017) module, which has three multi-head
self-attention layers so it can focus on multiple time-steps to predict the future time step, allowing
flexible access to all the temporal features independent of length of the sequence.

4 PeatSet

Dataset Features Spatial Resolution Temporal
Resolution

CWFIS BURNCLASS variable daily
CarbonTracker

(Global)
height_i (for

i in [0,10)) 3°x 2° 3-hourly

CarbonTracker
(Flux)

fire_flux,
fuel_flux 1°x 1° 3-hourly

VIIRS frp, confidence,
bright_ti4 375m x 375m daily

Tarnocai Peatland
Map TOCC variable fixed

ERA5

swvli (for
i in [1,4]), stli
(for i in [1,4]),

lai_hv, lai_lv,
tp, t2m, u10, v10

0.1° x 0.1° hourly

Table 4.1: Covariate features used for the prediction of fire. Datasets are presented along with the
relevant covariate features, spatial resolution, and temporal resolution. Spatial resolution
indicated with degrees is given by longitude/latitude.

Our second contribution is the curation of a collection of the first comprehensive Peat-Fire dataset
consisting of previously existing remote sensing/manually labelled datasets, which we use for the tasks
of predicting CWFIS burned area categories Table 4.1 presents the features used for the prediction
of fires. The spatial region of our dataset covers Canada; we focus on Canada due to the relative
abundance of data and area of peatlands. The time range of our dataset is from January 20, 2012 to
December 31, 2018, which is the intersection of the available time ranges for the datasets. Refer to
Appendix I for the exact coordinates used to specify the spatial bounds, details on each feature, and
the source of each dataset.

Peatland Features: To delineate peatland from other land, we use the Tarnocai Peatland Map,
which is the standard dataset used for determining where peatlands are in Canada. It is presented
as a shapefile with a set of polygons. Polygons have an associated percentage of peatland cover,
PEATLAND_P.

Figure 4.1: Tarnocai Peatland heatmap indicating percentage(%) of peatland cover.
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Fire Features: We use the burned area product from the Canadian Wildland Fire Information
System (CWFIS) (Service, b), the most comprehensive dataset for fires in Canada. This dataset is
an assimilated dataset that utilizes manual reporting from governmental agencies which should help
account for underground and long-lasting smouldering fires better than remote sensing sources.

Figure 4.2: Burned area in the peatlands by masking the CWFIS burned area with Tarnocai. CWFIS
data was max aggregated from 2012 to 2018.

CO2 Emissions Features: We use the Global Monitoring Laboratory Carbon Tracker CT2019,
which has a 3-by-2 longitude/latitude resolution across the globe for CO2 emissions. CT2019 also
includes the flux of CO2 across the globe. Flux is the gradient of concentration, and determines the
source of the CO2 emissions and the cause, e.g. fire, fossil fuels. We theorize that CO2 emissions can
serve as a latent variable to represent underground fires since underground fires still output significant
CO2.

Figure 4.3: CO2 emissions in the peatlands by masking the Global CarbonTracker data with Tarnocai.
Data is in units of molar density, and was mean aggregated from 2012 to 2018.

Soil Features: We also include features pertaining to amount of carbon stored in the land, as this is a
basic indicator of how much CO2 is emitted if a fire burns over a given area. The amount of carbon
stored per polygon is computed in Tarnocai using a combination of other factors, such as peat depth.

Figure 4.4: Total organic carbon content (kg /m2) in the peatlands by the Tarnocai dataset.
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Hot Spot Features: Hot spots are a good indicator of where fires are burning. We therefore
incorporate hot spot data from the VIIRS dataset. Due to its finer resolution, the VIIRS satellite
sensor imagery captures smaller fires than MODIS, which is the standard satellite-based data used by
many fire datasets such as the Global Fire Emissions Database (GFED). In general, hot spots have a
confidence of being associated with a fire, which is based on its temperature. However, peatland fires
burn at a lower temperature than traditional fires. Consequently, low-confidence hot spots that persist
over a long duration are potentially indicative of peatland fires.

Soil and Weather Features: We consider ERA5 which includes features pertaining to the soil and
the weather. We use soil moisture and soil temperature as indicators of a fire and wind velocity to
examine the spread of CO2 from a source.

Feature Processing: The datasets are explicitly projected to WGS84 (EPSG: 4326), the standard
longitude/latitude coordinate system. As each dataset has a different spatial resolution, they are
all scaled to have a resolution of 0.1° x 0.1° longitude/latitude per pixel, such that each feature at
a timestamp has dimensions of 483 by 910 pixels. We take daily timestamps. For features with a
sub-daily resolution, we take the average over sub-daily data points. For features that do not change
over time, such as TOCC from the Tarnocai dataset, we simply reuse the same data for each timestamp.

Additional Predicted Feature Processing: For prediction, we mask the predicted features, fire
occurrence or CO2 emissions, with the Tarnocai Peatland shapefiles to get only the values over
peatlands; we do not do this for the covariates. A polygon in the Tarnocai Peatland Map is considered
to be peatland if it has at least 10% peatland cover as specified by PEATLAND_P. A polygon in CWFIS
is considered to be burned if it is estimated 100% burned as given by the BURNCLAS feature.

5 Results

Recall Precision F1 Accuracy
Logistic Regression 0.8186 0.0016 0.0032 0.4298

UNet 0.9906 0.0212 0.0419 0.9607
UNet-LSTM 0.9944 0.0294 0.0571 0.9650

PeatNet 0.9668 0.0274 0.0532 0.9632
PT-Net 0.9232 0.0532 0.1006 0.9984

Table 5.1: Results for each of the models.
The models are evaluated on both recall and precision. Each model is provided 5 days of covariate
input data and predicts CWFIS burn classes for the subsequent day. Note that for this task, recall is
defined as the fraction of the fires correctly predicted over the total number of fires and precision is
defined as the fraction of the correct fires predicted over the total number of fires predicted. 3

We use binary cross entropy as the loss function for training the models. Note that the dataset is
heavily skewed since there are far fewer points under fire than not under fire. Further, similar to
previous studies, we emphasize recall over precision: it is more important to predict fires than to
correctly predict the non-fires. We weigh the fire to non-fire class by 0.001: 1 because the non-fire
class is roughly a thousand times greater than the fire class.

6 Discussion

Our results confirm that spatial information is vital for peatland fire prediction. The regression model,
which does not have information from nearby blocks, performs significantly worse than the models
with access to spatial information.

We also discover that access to temporal information improves peat fire prediction. The UNet-LSTM
and PT-Net, which both use temporal and spatial features, outperforms the U-Net, which does
not capture temporal information. PT-Net also takes advantage of both features in its architecture,
outperforming PeatNet, U-Net, and UNet-LSTM.

3Code and dataset details available at https://github.com/Sbali11/PeatlandFirePrediction.
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A likely explanation for the higher performance of UNet-LSTM as compared to PeatNet with a GNN
layer is that locality generally dominates in fire modelling; therefore, the long-distance relationships
the GNN models are less relevant.

7 Limitations/Future Work

7.1 Limitations

A limitation of our work was the computational challenge of training models due to the considerable
scale of the data. Most models took several hours to finish one epoch of training and evaluation.
Given the short time period of ProjectX, we were unable to test as many models or as many variations
on hyper-parameters as we would have wished.

In addition, there are a few limitations with our dataset. There were only six years of available data
across the features, which is fairly small for the types of deep learning architectures we implement.
The features in our dataset are sparse, and thus the total number of interesting data points is relatively
low. We also generate the dataset at a fairly low resolution, potentially erasing details that could have
been relevant for the fire prediction task.

7.2 Future Work

Future work can potentially improve the quality of predictions by considering additional covariates.
In this work, we focus mostly on environmental covariates; however, previously-mentioned research
has established that human activity and drainage play a significant part in the damage of peatlands.
Humans are also generally one of the primary causes of fire ignition. As such, integrating covariates
that indicate human activity might improve predictions.

We will also want to implement more baselines to compare with our models, such as random forests,
support vector machines, and vanilla CNNs.

Another area of future research could be to predict numerical fire severity metrics for each location
instead of predicting whether a location is on fire or not. We already ran experiments running PT-Net
for this purpose with a R2 of 0.583. We measure fire severity by predicting CO2 emissions, which
potentially has the benefit of identifying underground fires that are not detected by VIIRS or CWFIS.
In the future, we will want to implement emission prediction for our other models. We may also
try to integrate different parameters of severity, such as fire radiative potential or temperature, to
minimize the effect of noise within CO2 emissions datasets.

Lastly, some of our models might prove useful in forest fire prediction as well as peat fire prediction.
The success of PT-Net in particular suggests the potential of attentional models to deal with time-series
fire data.

8 Conclusion

In this work, we first develop several novel architectures and adapt newer machine learning models
to the problem of peat fire prediction. Our best model, PT-Net, shows great improvement over
other models for fire prediction. We show experimentally that our approaches which consider the
spatiotemporal aspects of the data outperform those that do not.

Second, we assemble a collection of relevant datasets to enable future studies of peatland fires. We
hope that the data collection we provide will facilitate further research into peatland fire prediction.

Accurate fire spread and severity prediction can allow decision makers to invest their attention to
areas with potentially severe peat fires and therefore decrease associated environmental and economic
harms. The prevention of peat fires would lead to a significant decrease in global fire emissions. We
hope our current work will inspire more applications of machine learning within the peatland domain
to this end.
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Appendix I: Dataset Annotations

We list features we considered interesting from the following datasets, whether they were eventually
used or not. For the purpose of our research, the features used were bound by the following
South/North/West/East coordinates: -141.0000°/-50.0000°/41.7500°/90.0000°.

1. Tarnocai Peatland Map (Tarnocai et al., 2011a)(Tarnocai et al., 2011b)(Tarnocai et al., 2011c)
A set of shapefiles capturing where the peatlands are, what type (bog, fen, swamp marsh)
they are, and how much carbon they store. The data was gathered through survey and
published by National Resources Canada.
a) Spatial Range: Canada
b) Variables:

i. Peatland (%) (PEATLAND_P): Percentage of shapefile polygon covered in peatland.
ii. BOG_PCT: Percentage of shapefile polygon covered in bog.

iii. FEN_PCT: Percentage of shapefile polygon covered in fen.
iv. SWAMP_PCT: Percentage of shapefile polygon covered in swap.
v. MARSH_PCT: Percentage of shapefile polygon covered in marsh.

vi. TOCC: The average amount of carbon stored per surface area (kg/m2) for the shapefile
polygon (uses peat depth).

2. Canadian Wildland Fire Information System (CWFIS) (Service, b)(Service, a)
Shapefiles indicating where fires occurred and their burned areas. Data on fires was collected
through survey by Canadian fire management agencies. Data on burned area was calculated
through a combination of survey data, aerial photography, and satellite data, such as from
through MODIS, VIIRS, Landsat, and Sentinel-2.
a) Spatial Range: Canada
b) Temporal Resolution: Daily
c) Temporal Range: < January 2000 - January 2019
d) Variables:

i. BURNCLAS: Proportion of land burned for shapefile polygon. 1: estimated 25%
burned, 2: estimated 50% burned, 3: estimated 75% burned, 4: estimated 100%
burned.

ii. Fire: Shapefile polygons outlining fires.
3. VIIRS

Location of hot spots, which are thermal anomalies that often indicate fire. The data
is gathered by the VIIRS sensor, onboard the Suomi NPP and NOAA-20 polar-orbiting
satellites.
a) Spatial Range: Global
b) Spatial Resolution: 375m x 375m
c) Temporal Range: January 2012 - present
d) Temporal Resolution: Daily
e) Variables:

i. frp: Fire radiative power, megawatts.
ii. confidence: Confidence of individual hot spots. 0: low, 1: nominal, 2: high.

iii. bright_ti4: Fire pixel channel I4 brightness temperature (Kelvin).
4. Global Monitoring Laboratory Carbon Tracker CT2019 Globe (A. R. Jacobson, 2020)

a) Spatial range: Global (NOTE: During winter time, high latitude regions are not reliable.)
b) Spatial resolution: 3° longitude x 2° latitude
c) Temporal Range : January 2000 - present
d) Temporal Resolution: 3-hourly
e) Variables:

i. height_i, for i ∈ [0,10): CO2 molar density at 10 different height levels above the
ground. Refer to Table 1 in Section 6.1 on their documentation for the actual heights
in meters.
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5. Global Monitoring Laboratory Carbon Tracker CT2019 Flux (A. R. Jacobson, 2020)
a) Spatial range: Global (NOTE: During winter time, high latitude regions are not reliable.)
b) Spatial resolution: 1° x 1°
c) Temporal Range: January 2000 - present
d) Temporal Resolution: 3-hourly
e) Variables:

i. fire_flux: Flux of CO2 attributed to fire.
ii. fuel_flux: Flux of CO2 attributed to burning fossil fuel.

6. ERA5 (Hersbach et al., 2020)
The standard dataset on weather variables, such as pertaining to soil, precipitation, tem-
perature, and wind. The data is an assimilation between observations and modelling of
climate.
a) Spatial Resolution: 9km x 9km regridded for 0.1° x 0.1°
b) Temporal Resolution: hourly
c) Temporal Range: January 1981 - 3 months before present
d) Variables:

i. swvl1: Soil water level 1. Meters-cubed water in meters-cubed soil at a depth of 0 -
7 cm from surface.

ii. swvl2: Soil water level 2. Meters-cubed water in meters-cubed soil at a depth of 7 -
28 cm from surface.

iii. swvl3: Soil water level 3. Meters-cubed water in meters-cubed soil at a depth of 28
- 100 cm from surface.

iv. swvl4: Soil water level 4. Meters-cubed water in meters-cubed soil at a depth of
100 - 289 cm from surface.

v. stl1: Soil temperature level 1. Temperature of soil in Kelvins at a depth of 0 - 7 cm
from surface.

vi. stl2: Soil temperature level 2. Temperature of soil in Kelvins at a depth of 7 - 28
cm from surface.

vii. stl3: Soil temperature level 3. Temperature of soil in Kelvins at a depth of 28 - 100
cm from surface.

viii. stl4: Soil temperature level 4. Temperature of soil in Kelvins at a depth of 100 -
289 cm from surface.

ix. lai_hv: Leaf area index, low vegetation. Surface area of low-lying leaves in meters-
squared over area over area land in meters-squared. Characterizes the density of low
vegetation such as crops, marshes, grasses, bogs.

x. lai_lv: Leaf area index, high vegetation. Surface area of high-reaching leaves in
meters-squared over area land in meters-squared. Characterizes the density of high
vegetation such as forests and trees.

xi. tp: Total precipitation. Total amount of water accumulated over an hour. Given
as the depth in meters the water would have been if spread evenly over the spatial
unit. CAUTION: This variable is an aggregation and not an average, so its value
describes a very specific space and time.

xii. t2m: 2-meter temperature. Temperature (K) two meters above the surface.
xiii. u10: East-ward component of wind. Positive-x component of speed (m/s) of wind

ten-meters above surface.
xiv. v10: North-ward component of wind. Positive-y component of speed (m/s) of wind

ten-meters above surface.
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application of ML on current climate problems. In particular, he mentioned project ideas involving
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Ann Lee, head of the Statistical Methods for the Physical Sciences group at CMU, and her Ph.D.
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Gordon Hamish, research professor at CMU with a focus on air-borne pollution. He advised us to
look more carefully into the GFED data, because it might be ill-posed to helping us identify fires most
relevant to peatlands. The GFED data uses the MODIS satellite burned area product for fire–however,
MODIS has difficulty identifying small fires and performs poorly when the ground is covered by
cloud, fog, or smoke. Instead, he encouraged us to consider the more niche problem of mapping small,
underground fires using field data as the ground truth. He suggested we contact Robert Yokelson, an
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Xinyan Huang, professor at Hong Kong Polytechnic University who wrote his thesis on the combus-
tion of peatlands. He helped us understand the difference between underground and aboveground
peatland fires. Surface fires release more CO2 because their intake of oxygen is faster. Underground
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her doctoral student, Laura Kiely.

Laura Kiely, PhD student of the University of Leeds who specializes in Indonesian peatlands. She
recommended we approach analyzing emissions from a “bottom-up" perspective, that is, predict how
much carbon dioxide emissions come from fire by examining the carbon content of the land. This is
in contrast to observing the concentrations of carbon dioxide through satellites. The carbon dioxide
disperses quickly from the source. Aas satellites have long update times (more than a few weeks), it
is hard to determine if the carbon dioxide at a site came from the site or was dispersed from another
site. She also informed us that field data for emissions from Indonesian peatland fires was difficult to
come by for logistical and political reasons. Without field data, it is difficult to validate a model that
predicts how much emissions are produced in an area.

Amy Braverman, JPL scientist with expertise in remote sensing. She told us the importance of
determining whether a data source was observational, model-generated, or an assimilated. Data
sources that are more observational are closer to ground truth; however, they are often noisier. She
recommended we examine the NASA OCO-2 dataset for carbon dioxide. However, as the OCO-2
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Sophie Wilkinson, postdoctoral fellow at McMaster University who is expert on Canadian peatlands.
She helped us decide to study Canadian peatlands over Indonesian peatlands by recommending us
a wealth of data associated with the former. In particular, she pointed us to the Canadian Wildland
Fire Information System (CWFIS), which contains historical information spanning several decades
on fires that have occurred throughout Canada. She also recommended using hot spots to identify
peatland fires that emitted carbon dioxide. She also referred us to the Tarnocai peatland dataset,
which is a shapefile of where peatlands are in Canada.

Alexandra Barthelmes, coordinator of the Global Peatlands Database who graciously allowed us
access to the dataset.

Brian Simpson, analyst and modeller of the Canadian Forest service who answered our many
questions about the burned area and fire polygon CWFIS, datasets and allowed us access to their fire
intensity dataset.

Mikael Kuusela, professor of statistics and data science at CMU and his PhD student, Michael
Stanley. Both of them are heavily involved in the OCO-2 carbon dioxide dataset. After we examined
OCO-2, we realized its coverage and temporal resolution were not suitable for our needs. They
recommended we look at more processed, model-based products, the most notable being the Global
Monitoring Laboratory Carbon Tracker. They also suggested we consider the flux of carbon dioxide
as well as the concentration to determine where carbon dioxide comes from. The Carbon Tracker
is partially based on satellite data. Satellite data uses the sun to determine where carbon dioxide is.
Therefore, for high northern latitudes, data captured during winter is not reliable because of the lack
of sun.
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founded by members of the University of Toronto community. We are grateful for the opportunity
given by this program to connect with other researchers, get feedback on our project, and present our
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